
Web-Based Software Tool for Constraint-Based Design Specification
of Synthetic Biological Systems
Ernst Oberortner† and Douglas Densmore*,†,‡

†Department of Electrical and Computer Engineering and ‡Center of Synthetic Biology (CoSBi), Boston University, Boston,
Massachusetts 02215, United States

ABSTRACT: miniEugene provides computational support for
solving combinatorial design problems, enabling users to specify
and enumerate designs for novel biological systems based on sets
of biological constraints. This technical note presents a brief
tutorial for biologists and software engineers in the field of
synthetic biology on how to use miniEugene. After reading this
technical note, users should know which biological constraints are
available in miniEugene, understand the syntax and semantics of
these constraints, and be able to follow a step-by-step guide to
specify the design of a classical synthetic biological systemthe
genetic toggle switch.1 We also provide links and references to more information on the miniEugene web application and the
integration of the miniEugene software library into sophisticated Computer-Aided Design (CAD) tools for synthetic biology
(www.eugenecad.org).

■ THE MOTIVATION BEHIND miniEugene
Combinatorial design is emerging as one potential design
paradigm for synthetic biology.2 Taking a library of biological
parts and combining them to create designs can be a powerful
approach since relatively small libraries can encode many
possible designs. The enumeration of these designs can be
performed rapidly in silico. In order for combinatorial design to
be automated and reproducible, however, the specification of
biological parts and the constraints on their composition needs
to be formalized.
The Eugene languagefirst released in 2009was the result

of an iGEM project to explore the notions of part and
constraint specification.3 After five years of development, the
Eugene language has grown to include declarative features for
efficient constraint-based exploration of designs and imperative
features (such as conditional branches, loops, and function
prototyping) for supporting the automated generation of part
libraries and constraints. In addition, Eugene supports data
exchange standards and repositories (such as GenBank, the
Synthetic Biology Open Language (SBOL), the iGEM
Registry) for the import and export of biological data and
designs.
While these features of Eugene are powerful, many cannot be

used to their full potential until a set of baseline commands is
written by a software developer. Also, Eugene relies on the
definition of a part library with specific part-level properties.
Developing this library can be onerous and prevents early
design space explorations in the initial prototyping stages.
Furthermore, a reduced set of commands is needed to address
the problem of introducing nondeveloper users to Eugene.
miniEugene provides this set of simple yet powerful commands
and enables beginners to prune a design space starting from a
basic understanding of the biological parts involved. In this

technical note, we demonstrate the use of miniEugene in a
specifically developed web application. We also exemplify the
grammar of the miniEugene language, moving toward the goal
of standardizing the communication of designs for synthetic
biology and their associated biological constraints.

■ THE miniEugene WEB APPLICATION

The miniEugene web application (accessible via www.
eugenecad.org) provides an editor for the specification of
miniEugene constraints and leverages the miniEugene software
library to execute commands. In Figure 1, we illustrate the steps
involved in using the miniEugene web application to specify the
design for the genetic toggle switch.1

STEP I“Specify Design Length”. miniEugene requires
the specification of the LENGTH OF THE DESIGN. For example, the
toggle switch design has five available positions for placing the
parts p1, p2, c1, c2 and GFP from the part library. The miniEugene
web application provides a drop-down menu to choose the
LENGTH OF THE DESIGN. For the toggle switch design
specification, we select 5 from the drop-down menu.

STEP II“Specify Design Constraints”.

• In lines 24, we specify COUNTING and PAIRING

constraints to ensure the correct number of occurrences
for parts in the design: the two promoters (p1, p2) must
occur pairwise WITH the two repressors (c1, c2), and the
design CONTAINS one reporter (GFP).

• In lines 710, we ensure the biologically valid
POSITIONING of the parts, that is, c1, p2, p1, c2, GFP.

Received: April 1, 2014
Published: November 26, 2014

Technical Note

pubs.acs.org/synthbio

© 2014 American Chemical Society 757 dx.doi.org/10.1021/sb500352b | ACS Synth. Biol. 2015, 4, 757−760

www.eugenecad.org
www.eugenecad.org
www.eugenecad.org
pubs.acs.org/synthbio


• In lines 1317, we constrain the ORIENTATION of the
parts. Given the POSITIONING of the repressor-promoter
pairs(c1, p1) and (c2, p2)within the design, they are
NOT allowed to have the SAME_ORIENTATION. In addition,
we specify that the p1 promoter must be REVERSE

oriented, while the p2 and GFP part must be FORWARD

oriented.
• In lines 2021, we specify desired regulatory

INTERACTIONS: c1 REPRESSES p1 and c2 REPRESSES p2.

Pushing the “Solve” button after specifying each set of
constraints helps to debug the design space exploration process
and to review how the constraints prune the design space.
STEP III“Design Generation”. Now, we command the

miniEugene constraint solver to enumerate all designs that
comply with the specified constraints. This is done by clicking
the “Solve” button. Currently, the miniEugene solver does not
incorporate heuristics, which can lead to a design space
exploration process that is costly in terms of time. Given the
same set of constraints, however, the miniEugene solver always
enumerates the same set of designs.
STEP IV“Select Design Representation”. Besides

providing detailed statistics for the design space exploration
process, the miniEugene web application can generate stand-
ardized representations for designs. First, miniEugene uses
Pigeon4 to graphically represent designs in terms of symbols
that are compliant with the SBOL Visual standard.5

Second, miniEugene integrates the libSBOLj Java software
library to export designs to SBOL,6 thereby enabling the
exchange of these designs with SBOL-compliant software tools.
While the regulatory interaction information is not captured by
the current version of SBOL (SBOL 1.1.07), the SBOL
community has recently proposed extensions to the SBOL data
model8 to address this shortcoming.
Third, miniEugene compiles a Eugene header file,3 which

contains the design and interaction specifications. This file
provides a bridge to then proceed into the fully fledged Eugene
environment for more detailed design specifications. For
example, users can link the constraint operands (p1, c1, GFP,
etc.) with additional characteristics defined in the Eugene
language, such as static biological data (e.g., DNA sequences) or

experimentally measured dynamic characteristics (e.g., expres-
sion level and rate of degradation).

■ THE BIOLOGICAL CONSTRAINTS PROVIDED BY
miniEugene

In Table 1, we list all of the constraints currently supported by
miniEugene, describe their semantics, and provide an example of
using each one with parts from the toggle switch design (see
Figure 1).

■ THE PROGRAMMATIC INTEGRATION OF
miniEugene

miniEugene is open-source and freely available under the BSD
3-clause license (http://opensource.org/licenses/BSD-3-
Clause). The miniEugene software library is implemented in
Java and can be downloaded as Java ARchive (JAR) file format,
enabling a rapid integration and utilization of miniEugene’s
constraint specifications and combinatorial design space
exploration functionalities in Java-based synthetic biology
CAD tools. Additionally, the interfaces of the miniEugene
software library are globally invokable via a web service that is
based upon the XML-RPC data exchange protocol. More
detailed information, such as examples, links, and documenta-
tion on the programmatic integration and utilization of the
miniEugene software library and its supported interfaces is
provided on the miniEugene Web site (www.eugenecad.org).

■ miniEugene IN USE AND FUTURE WORK
The miniEugene software library is being used in research
projects, software prototypes, and synthetic biology CAD tools.
Recently, we published the use of the miniEugene web
application for the iterative design of a complex biological
system, the genetic priority encoder.9 The Boston University
2014 iGEM team worked toward the physical implementation
of the priority encoder circuit with the support of the
miniEugene web application (http://2014.igem.org/
Team:BostonU). The web application is also being used by
undergraduate and graduate researchers for the combinatorial
design of genetic regulatory networks.
The Cello (http://www.cellocad.org) software prototype

incorporates the miniEugene software library and uses its

Figure 1. Designing the genetic toggle switch with miniEugene.

ACS Synthetic Biology Technical Note

dx.doi.org/10.1021/sb500352b | ACS Synth. Biol. 2015, 4, 757−760758

http://opensource.org/licenses/BSD-3-Clause
http://opensource.org/licenses/BSD-3-Clause
www.eugenecad.org
http://2014.igem.org/Team:BostonU
http://2014.igem.org/Team:BostonU
http://www.cellocad.org


constraints and design space exploration capabilities during the
automated design of genetic regulatory circuits. The Eugene
language also uses and integrates the miniEugene software
library for specifying constraints and solving combinatorial
design problems regarding the composition of genetic parts.

Eugene, and hence miniEugene, have been integrated into the
Vector NTI Express Designer (Life Technologies) and the j5
Device Editor (JBEI).10 Eugene has also been used for complex
gene cluster analysis by MIT, BU, and Broad Institute
researchers.11

Table 1. List of All Currently Provided Constraints in miniEugene

ACS Synthetic Biology Technical Note

dx.doi.org/10.1021/sb500352b | ACS Synth. Biol. 2015, 4, 757−760759



In the future, we will support constraints to specify
hierarchical composition of designs. For example, this could
be accomplished by extending the CONTAINS constraint. In
addition, we want to determine automatically the minimum
length of a design based on the specified constraints and their
operands, making the specification of the design’s length
optional. The miniEugene web application has a support forum
that allows users to post questions, report bugs, and provide
feedback, such as identifying limitations of the expressivity of
the miniEugene constraints in light of novel biological designs
and discoveries. As a result, we expect that the list of constraints
and the community surrounding miniEugene and Eugene will
grow quickly.

■ AUTHOR INFORMATION
Corresponding Author
*E-mail: dougd@bu.edu.
Notes
The authors declare no competing financial interest.

■ ACKNOWLEDGMENTS
The work was funded under National Science Foundation
(NSF) grant 1147158 and by the Agilent Technologies’
Applications and Core Technology University Research
(ACT-UR) program. The authors thank Nicholas Roehner
for his help in editing the manuscript and providing feedback
on its contents. The authors also thank all other members of
the CIDAR Lab for their intellectual contributions during
collaborative discussions.

■ DEDICATION
We dedicate this manuscript to the memory of Allan
Kuchinsky.

■ ABBREVIATIONS
SBOL,Synthetic Biology Open Language; XML-RPC,remote
procedure call protocol using XML to encode its calls and
HTTP as a transport mechanism; JAR,Java ARchive;
CAD,computer aided design; iGEM,international genetically
engineered machine

■ REFERENCES
(1) Gardner, T. S., Cantor, C. R., and Collins, J. J. (2000)
Construction of a genetic toggle switch in Escherichia coli. Nature 403,
339−342.
(2) Endy, D. (2005) Foundations for engineering biology. Nature
438, 449−453.
(3) Bilitchenko, L., Liu, A., Cheung, S., Weeding, E., Xia, B., Leguia,
M., Anderson, J. C., and Densmore, D. (2011) Eugene: A domain
specific language for specifying and constraining synthetic biological
parts, devices, and systems. PLoS One 6, e18882.
(4) Bhatia, S., and Densmore, D. (2013) Pigeon: A design visualizer
for synthetic biology. ACS Synth. Biol. 2, 348−350.
(5) Quinn, J. et al. (2013) Synthetic Biology Open Language Visual
(SBOL Visual), Version 1.0.0. BioBricks Foundation Request for
Comments (BBF RFC) #93, DOI: 1721.1/78249.
(6) Galdzicki, M., et al. (2014) The Synthetic Biology Open
Language (SBOL) provides a community standard for communicating
designs in synthetic biology. Nat. Biotechnol. 32, 545−550.
(7) Galdzicki, M. et al. (2012) Synthetic Biology Open Language
(SBOL) Version 1.1.0. BioBricks Foundation Request for Comments
(BBF RFC) #93, DOI: 1721.1/78249.
(8) Roehner, N., Oberortner, E., Pocock, M., Beal, J., Clancy, K.,
Madsen, C., Misirli, G., Wipat, A., Sauro, H., and Myers, C. J. (2014)

Proposed data model for the next version of the Synthetic Biology
Open Language. ACS Synth. Biol., No. 10.1021/sb500176h.
(9) Oberortner, E., Bhatia, S., Lindgren, E., Densmore, D. A rule-
based design specification language for synthetic biology. J. Emerg.
Technol. Comput. Syst. (JETC) (accepted).
(10) Chen, J., Densmore, D., Ham, T. S., Keasling, J. D., and Hillson,
N. J. (2012) DeviceEditor visual biological CAD canvas. J. Biol. Eng. 6,
1.
(11) Smanski, M. J., Bhatia, S., Zhao, D., Park, Y., Woodruff, L. B. A.,
Giannoukos, G., Ciulla, D., Busby, M., Calderon, J., Nicol, R., Gordon,
D. B., Densmore, D., and Voigt, C. A. (2014) Functional optimization
of gene clusters by combinatorial design and assembly. Nat. Biotechnol.
32, 1241−1249.

ACS Synthetic Biology Technical Note

dx.doi.org/10.1021/sb500352b | ACS Synth. Biol. 2015, 4, 757−760760

mailto:dougd@bu.edu

